An Optimized Part Based Gait Recognition using Multi- Objective Particle Swarm Optimization

نویسنده

  • M. AASHA
چکیده

Gait identification task becomes difficult due to the change of appearance by different cofactors (e.g., shoe, surface, carrying, view, and clothing). Some parts of gait are affected by cofactors and other parts remains unaffected. Most of the gait identification systems consider only most effective parts thereby omitting less effective parts. However some significant features for gait identification resides in less effective parts and are important for more accurate recognition.In this paper, adaptive fusion of part based gait identification is proposed. The proposed gait identification adaptively fuses the best informative less effective part with the most effective parts. The best informative less effective part is selected by using Multi objective adaptive PSO to the varying threshold value. These parts are fused using adaptive fusion method and from these fused parts, the variance ratio is estimated and recognition is done based on variance threshold value. The variance threshold value is calculated based on Particle Swarm optimization (PSO) which dynamically calculates the threshold value for varying parts. Experimental result of proposed system achieves better result when compared with recognition using EnDFT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Optimization on a Humanoid Robot using Particle Swarm Optimization

This paper describes the application of Particle Swarm Optimization (PSO) for gait optimization on a humanoid robot. The biped gait is modeled by a number of parameterizable trajectories. To achieve omni-directional walking, different sets of gait parameters are optimized for specific walk directions and interpolated later. By using a fitness test based on an acceleration walk, the optimized se...

متن کامل

Multi-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)

In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...

متن کامل

The Study on the Dynamic Multi-objective Recognition and Estimation Algorithm of Infrared Imaging Based on Particle Swarms Collaboration

Recently, a problem that the infrared decoy interferes infrared detection system, cannot be solved. With the gradual application and popularity of the particle swarm optimization, it is preferable to apply it to dynamic multiobjective optimization to solve the problem of the recognition and the estimation of dynamic multi-object in infrared imaging. In this study, the dynamic multi-objective es...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015